RFQ-cooler and buncher

Ari.Jokinen@cern.ch PS-OP-ISOLDE Bat. 8-R-007, Tel. +41-22-7673696

- Introduction: manipulation of ion beams
- Introduction: principle of RFQ with examples from JYFL ion cooler and buncher
- **ISOLDE-RFQ**: simulations
- Outlook and request for co-operation

ICP-meeting, 16.1.2002

An on-line experiment

Manipulation of radioactive ions

manipulation of io	n group properties beam, cloud
• energy	energy degrading stopping, trapping acceleration
 energy spread 	cooling, trapping
 emittance 	cooling
• size	cooling, trapping
 time structure 	pulsing bunching

manipulation of ion properties

- charge state ionization
- ionic/atomic state
- spin direction
- alignment polarization

"ion beam cooler" (gas-filled RF quadrupole) "charge breeder" (ECRIS & EBIS)

Ion beam cooler: principle

- reducing beam size, emittance, energy spread
- storing
- bunching

the output does not depend on the input !

Ion beam cooler: RF confinement

Mathieu parameter

$$q = \frac{4 \ Q \ V_{RF}}{m \ r_0^2 \ \Omega_{RF}^2}$$

Ion motion is stable when 0 < q < 0.91

Ion beam cooler: axial field

axial field due to segmentation of quadrupole rods

- speeds up transmission
- allows storing and bunching

Ion beam cooler: storing and bunching

Existing RFQ's in numbers

- Injection energy $100 \text{ eV} \rightarrow \text{HV-platform}$
- Pressure 0.1 mbar \rightarrow differential pumping
- Length (rods) 0.5 m, distance of rods 2 cm
- $V_{RF} = 200 \text{ V}, f_{RF} = 1 \text{ MHz}$
- Transmission efficiency 60 %
- Energy spread < 1 eV
- Transverse emittance few π mmmrad
- Trapping time 10 ms 10 s
- Bunch length $1-10 \,\mu s$
- Intensities: 5 nA (3E10), sim. 1 μ A (6E12)

A. Nieminen et al., NIM A469 (2001)

F. Herfurth et al., NIM A469 (2001)

A. Kellerbauer et al., NIM A469 (2001)

RFQ at ISOLDE-hall

Straight section after final focus of HRS

SCHEMATIC LAYOUT OF ISOLDE-RFQ

INJECTION OF IONS

Stopping distance vs. E_{inj}

Stopping distance vs. pressure

Simulated cooling of ions in ISOLDE-RFQ

ISOLDE-RFQ in numbers

- A = 100
- $R_0 = 20 \text{ mm}$
- $R_m = 3.5 \text{ mm}$
- $W = 2\pi f = 2 MHz$
- V(RF) = 200 V
- $\phi = 5 \text{ mm}$
- $\varepsilon = 40 \pi$ mm mrad
- $E_{inj} = 200 \text{ eV}$

- q = 0.48
- D = 24.1 eV
- $E_{tr} = 15.4 \text{ eV}$
- $\theta = 4.8$ degrees
- $D_m = 0.74 \text{ eV}$

CAPACITY 6 cm long, 2 mm radius ion cloud 2.5E6 ions 2.5E9 ions/s (1000 m/s) 2.5E7 ions/bunch (100 ms bunch) VACUUM Flow rate of the order of 100 mbar l/s

Outlook 1

- Smaller focus into an experiment
- Better energy definition of the ion beam
- Bunched beam
- New starting point of the ion transport
- Stability and independence of ion beam properties against changes in the front-end
 - Mechanical, pressure or temperature variations
 - Ion source type
- Shorter stable beams sessions, better transmission
- Route for calculated ion optics or ABS ?

Outlook 2

- Solid State Physics
 - Soft-landing experiments
 - Any high dose, small size implantations
 - Channeling experiments ?
- Nuclear Spectroscopy
 - Correlation studies
 - Tagging experiments
- Laser Spectroscopy
 - Better overlap of ion beam and laser
 - Bunch-gating

Outlook 3

- NICOLE
 - Higher injection efficiency
- REX-ISOLDE
 - Simplified and more efficient capture to REXTRAP
- MISTRAL
 - Higher transmission
- WITCH-Project, ECR, ...

OPEN QUESTIONS

- Gryogenic cooling
- Switch to conventional quadrupole
- Funnel-structure
- Fast extraction

FUNNEL ?

Square well potential – higher capacity Simple construction, in principle Does it work ?

Co-operation 2002-2004

Support is asked in following topics:

- Mechanical structure (ideas, technical design, ...)
- Vacuum (components, materials, suppliers for CERN, ...)
- Electronics (power supplies, feedthroughs, cables, ...)
- RF-techniques (design of RF-amplification and tuning scheme, components, ...)
- Control system (ISOLDE compatibility)
- Construction, testing, diagnostics, ...